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We rigorously derive an analytical expression for the energy equilibration rate in nonequilibrium electron-
ion systems that is valid for a large class of systems including solid and liquid metals, warm dense matter, and
hot, weakly coupled plasmas. To this end we first derive a generalized Langevin equation that describes the
motion of the classical ions in the quantum mechanical environment of the electrons. A general expression for
the energy relaxation rate is then obtained assuming that each subsystem is in thermal equilibrium with itself.
Direct approximations naturally reproduce the popular results of Landau and Spitzer for hot plasmas and the
“Fermi golden rule” result for dense matter. We propose a method to evaluate numerically the energy relaxation
rate with finite-temperature density functional theory calculations in difficult regimes such as the warm dense
matter regime where neither quantum nor strong coupling effects can be ignored.
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I. INTRODUCTION

In most laboratory experiments, plasmas are created and
probed by depositing energy into matter, driving it far from
equilibrium. Depending on the details of the energy deposi-
tion, the deposited energy is mostly dumped into one of the
particle species, electrons or ions, thereby leading to an im-
balance between the electronic and ionic systems. For in-
stance, in short-pulse laser-plasma interaction experiments,
the laser energy preferentially heats the electrons, whereas in
shock experiments, the shock wave preferentially heats the
ionic subsystem. In the study of the evolution to equilibrium
of nonequilibrium plasmas, a subject that has received con-
siderable attention is temperature relaxation. Knowledge of
temperature relaxation rates is of critical importance not only
to understand general nonequilibrium physics but also for
explicit practical purposes. Such information is crucial, for
example, to simulate the evolution of the fusion capsule in
inertial confinement fusion experiments �1� or to interpret the
measurements of diagnostics �2,3�.

Because of the disparity between the masses of electrons
and ions in a plasma, the energy exchange between the
two subsystems occurs on a time scale that is much slower
than the time scale of energy equilibration within each sub-
system. It therefore makes sense to attribute a temperature to
each subsystem and to consider the subsequent relaxation
toward equilibrium of the resulting two-temperature system
�for definiteness we consider one species of ions only� that
occurs as a result of the interaction between the two
subsystems. The rate at which the electronic and ionic sub-
systems come into thermal equilibrium depends on the
physical conditions �temperatures, densities� and, in particu-
lar, on the strength of the coupling among the particles and
the degree of quantum degeneracy of the electrons. A variety

of analytical expressions for the electron-ion energy equili-
bration rate were derived, which apply to specific physical
regimes. The first description of energy relaxation in
electron-ion systems originates with the works of Landau
and Spitzer �4�, and it is appropriate for dilute, hot, and
therefore weakly coupled plasmas for which the thermal en-
ergy of the particles greatly exceeds the potential energies.
Their approach considers the energy loss due to classical
binary electron-ion Coulomb collisions and, as a conse-
quence, necessitates introducing two ad hoc cutoff param-
eters kmin and kmax to mimic the quantum interference and
finite-ion-size effects for short-distance collisions as well as
the Coulomb screening of the charges. These cutoffs appear
in the relaxation rate in the so-called Coulomb logarithm
ln �=ln�kmax /kmin�. Further developments based on classical
and quantum kinetic equations �e.g., Boltzmann, Lenard-
Balescu� were proposed in order to improve and predict the
value of the Coulomb logarithm �5�. An interesting work in
that respect was recently presented by Brown et al., who
used the method of dimensional regularization �originally de-
veloped in quantum field theory� to obtain an expression for
the temperature equilibration rate which is exact to leading
and next-to-leading orders in the plasma coupling parameter
�6�. More recently, Dharma-wardana and Perrot �7� and
Hazak et al. �8� proposed energy transfer models in regimes
for which electron degeneracy and strong Coulomb coupling
effects cannot be neglected. Using linear response theory,
they derived a formula that is valid if the electron-ion cou-
pling is weak. This formula is nothing but the extension to
plasmas of the “Fermi golden rule” formula derived by
Kogan �9� for the electron-phonon relaxation rate in metals
and semiconductors. In �8�, the authors showed that the
Fermi golden rule result reduces to the Landau-Spitzer form
in the nondegenerate electron limit. Dharma-wardana and
Perrot also proposed a formula, the coupled-mode formula,
that incorporates strong electron-ion coupling effects �7�.
This formula predicts a strong dependence of the relaxation
on the ion temperature and, surprisingly, does not seem to
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converge toward the well-established Landau-Spitzer result
at high temperature.

The goal of the present work is to rigorously derive a
general expression for the energy equilibration rate in a non-
equilibrium electron-ion system �1� that is valid for a large
class of physical systems, �2� that reproduces the popular
results previously mentioned in the appropriate limiting re-
gimes, and �3� that is amenable to numerical simulations for
physical regimes like the warm dense matter regime that are
difficult to model analytically. Our final result is valid when-
ever the ion subsystem can be treated as a classical system of
particles, which encompass most situations encountered in
plasma physics. In particular, no assumption is made about
the strength of the electron-ion coupling or the degree of
degeneracy of the electronic gas. To achieve this goal, we
first derive in Sec. II an equation that describes the motion of
classical ions of a nonequilibrium electron-ion system in the
quantum mechanical environment of the electrons. To this
end, we use the so-called influence functional technique of
Feynman and Vernon �10,11� to eliminate the electronic de-
grees of freedom and to obtain an effective equation of mo-
tion for the ions only. The latter is a generalized Langevin
equation whose stochastic nature describes the fluctuations in
the forces that the electrons exert on the ions and that are
responsible for the heat transfer between the two subsystems.
Then, in Sec. III, we use the ionic equation of motion to
derive a general expression for the energy relaxation rate
assuming that each subsystem is in thermal equilibrium with
itself. In Sec. IV, we show that simple approximations to the
relaxation rate naturally reproduce, for instance, the popular
results of Landau and Spitzer for hot plasmas and the Fermi
golden rule result for weakly coupled electron-ion systems.
Finally, in Sec. V, we propose a scheme to calculate numeri-
cally the energy relaxation rate with quantum molecular dy-
namics calculations in difficult regimes �e.g., the warm dense
matter regime� where quantum and strong coupling effects
certainly play an important role. The present presentation
focuses on the general formalism. A future presentation will
be devoted to the application of our formal results to specific
physical regimes �12�.

II. IONIC EQUATION OF MOTION

We consider an electron-ion system consisting of Ni ions
of mass M and charge Ze and of Ne electrons of mass m and
charge −e. The total Hamiltonian Htot of the system is the
sum of a purely ionic term Hi, a purely electronic term He,
and an electron-ion interaction V. Thus

Htot = Hi�q� + He�r� + V�r,q�

with

Hi = �
J=1

Ni PJ
2

2M
+ Vi�q� ,

He = �
j=1

Ne p j
2

2m
+

1

2 �
j,k=1

Ne e2

�r j − rk�
,

V�r,q� = �
J=1

Ni

�
j=1

Ne

vei�r j − RJ� ,

where the symbols q= �R1 , . . . ,RNi
� and r= �r1 , . . . ,rNe

�
denote the set of ionic and electronic positions, respectively.
It is convenient to introduce the ion density operator
nion�R�=�J=1

Ni ��R−RJ� and the electron density operator
ne�r�=� j=1

Ne ��r−r j�, and to rewrite the electron-ion energy
as

V =	 dr v�r�ne�r� with v�r� 
 	 dR nion�R�vei�r − R� .

It is important to mention that the following derivation al-
lows us to consider pure Coulomb electron-nucleus interac-
tions for fully ionized plasmas as well as partially ionized
systems with electron-ion interactions represented by a
pseudopotential vei when a nucleus and its tightly bound
electrons behaves as a rigid entity.

Before going into the details of the somewhat lengthy
derivation, we find it worthwhile at this point to enumerate
its main steps. For most physical situations the ions can be
treated classically while the electrons require a quantum me-
chanical treatment. Our first goal is to extract the classical
motion of the ions in the quantum environment of the elec-
trons. To this end, we eliminate the electronic degrees of
freedom and focus on the density matrix of the ions, Eq. �1�.
The equation of motion of the ions under the influence of the
quantal fluctuations in the electronic subsystem is obtained
from the path-integral formulation of Feynman and Vernon,
Eqs. �2� and �3�, by a cumulant expansion to second order in
the off-diagonal elements of the ionic density matrix. After
some efforts we obtain the expression �11� for the propagator
of the ionic system. The latter describes the ion dynamics as
a stochastic process governed by the stochastic equation of
motion �14�. The ion-ion interactions appear in the classical
ion-ion force while the influence of the electrons gives rise to
two terms, namely, a systematic deterministic force that de-
scribes the average friction of the electrons on the ions to-
gether with a stochastic force that describes the coupling of
the ionic motion to the quantal fluctuations in the electronic
subsystem. For short-time dynamics, the systematic force
can be expressed as the sum of the instantaneous Coulomb
force �which reduces to the Born-Oppenheimer force when
the system is at equilibrium� together with a friction term
proportional to the ion velocities. The latter is related to the
fluctuating force via a fluctuation-dissipation relation. The
resulting equation for the ionic motion is the generalized
Langevin equation �17�. It is this equation that we use in Sec.
III to derive the expression �28� for the energy relaxation
rate.

The complete information on the dynamics of the ions is
contained in the reduced density matrix

�i�t� 
 Tre �tot�t� , �1�
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which is obtained from the total density matrix
�tot�t�=e�−i/��Htot�t−t0��tot�t0�e�i/��Htot�t−t0� by tracing out
the electronic variables. Following the path-integral
approach of Feynman and Vernon �10,11�, the coordinate
representation of �i at time t can be related to its initial value
at time t0 as

�q��i�t��q�� =	 dq0	 dq0��q0��i�t0��q0��L�q,q�,t;q0,q0�,t0� ,

�2�

where the propagator L may be expressed as the double path
integral

L�q,q�,t;q0,q0�,t0� = 	
q0

q

Dq	
q0�

q�
D*q�

�exp
−
i

�
�Si�q� − Si�q����I�q,q�� . �3�

Here Dq=limN→��dq1¯dqN�M /2�i	�N/2 is the path-
integral measure and 	= �t− t0� /N. The quantity Si�q� is the

classical action induced by the ionic Hamiltonian Ĥi along
the path qt �13�,

Si�q� = 	
t0

t 
Mq̇t�
2

2
− Vi�qt���dt�.

Finally the functional I�q ,q�� is called the influence func-
tional and describes the effect of the electronic subsystem on
the time evolution of the ionic subsystem �I�q ,q��=1 for
zero electron-ion coupling�. The influence functional can be
written as an average of two time-evolution operators,
namely,

I�q,q�� = �Ut,t0
† �q��Ut,t0

�q�� , �4�

where Ut,t0
�q�=T exp�−�i / � ��t0

t H�t��dt�� is the time-
evolution operator between times t0 and t for the electronic
time-dependent Hamiltonian H�t�
He�r�+V�r ,qt� in which
the ions act like a time-dependent external perturbation as
they move along the path qt. Here T is the time-ordering
operator and �¯� means the average over the electronic bath,
namely, Tr��e�t0�¯ � where �e
Tri�tot is the electron
density matrix at time t0.

Equation �3� is an exact representation of the quantum
propagator for the ionic subsystem interacting with the elec-
tronic subsystem �14�. In order to proceed further, it is con-
venient to introduce the “center-of-mass” and “relative” co-
ordinates of ions x= �q+q�� /2 and y=q−q�, and to rewrite
the matrix elements �2� as �15�

�q��i�t��q�� = �x +
y

2
��i�t��x −

y

2
�

=	 dx0	 dy0 ��x0,y0,t0�L�x,y,t;x0,y0,t0� ,

with

L�x,y,t;x0,y0,t0� = 	
x0

x

Dx	
y0�

y

Dy

�exp� i

�
	

t0

t

dt�Mẋt�ẏt� − Vi
xt� +
yt�

2
�

+ Vi
xt� −
yt�

2
��I�x,y� �5�

and

I�x,y� 
 I
x +
y

2
,x −

y

2
� = �Ut,t0

† �x −
y

2
�Ut,t0�x +

y

2
�� .

�6�

The path xt measures propagation along the diagonal of the
ion density matrix, while the path yt is a measure of how far
the system gets off diagonal while propagating. In the full
classical limit, the density matrix becomes diagonal �16�. In
order to extract the motion followed by the ions in the pres-
ence of the quantal fluctuations in the electronic subsystem,
the central idea is then to expand ��x ,y , t� around its diago-
nal values by assuming that the off-diagonal components y
are small. This is done by using a cumulant expansion of the
integrand in Eq. �5�.

We first consider the influence functional Eq. �6�,
which involves the time-evolution operators for the
Hamiltonians,

H±�t� = He�r� + V
r,xt ±
yt

2
� = �He�r� + V�r,xt�� + �V±�t� .

Here the term �V±�t�
V�r ,xt±yt /2�−V�r ,xt� measures the
deviations of the electron-ion potential from its value on the
diagonal path xt due to the off-diagonal excursions. For small
off-diagonal elements yt, the corrections �V± are small and
linear in yt,

�V±�t� � ±
yt

2
· V��r,xt� with V��r,xt� 
 � �V

�q
�

q=xt

,

and, therefore, �V±�t� can be treated as a perturbation to the
Hamiltonian He�r�+V�r ,xt�. Applying second-order pertur-
bation theory to Eq. �6�, we expand I�x ,y� into powers of the
off-diagonal components y up to order y2,

I�x,y� = 1 +
i

�
	

t0

t

�
k

yk�t���Fk�t���dt�

−
1

�2	
t0

t

dt�	
t0

t�
ds �

k
�

j

yk�t��yj�s���Fk�t��,Fj�s���

+ O�y3� �7�
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where �· , · � is the anticommutator. Here we have defined the
operators

Fk�t� = − Ut,t0
† �x�� �V

�qk
�

q=xt

Ut,t0
�x�, k = 1, . . . ,3Ne, �8�

which we write in the compact form

F�t� = − Ut,t0
† �x�V��r,xt�Ut,t0

�x�

. Some contributions to the infinite series �7� for I�x ,y� can
be summed up in a closed form by reexponentiation, which
automatically sums up an infinite number of terms. The re-
sulting approximate influence functional is

I�x,y� = exp
−
i

�
	

t0

t

yt� · �F�t���dt�

−
1

�2	
t0

t

dt�	
t0

t�
ds yt� · C�x��t�,s� · ys� . �9�

Here we have introduced the symmetric correlation function
between the components �8�,

Ckj
�x��t�,s� 


1

2
Š�Fk�t�� − �Fk�t���,Fj�s� − �Fj�s���‹ ,

where the superscript �x� denotes the dependence upon
the trajectory xt. Substituting Eq. �9� into Eq. �5� and expand-
ing the potential Vi�x±y /2� to second order in the off-
diagonal path y, we arrive at the following expression for the
propagator:

L�x,y,t;x0,y0,t0� = ei
	
x0

x

Dx	
y0

y

Dy exp�−
i

�
	

t0

t

dt�yt� · 
Mẍt� +
�Vi

�q
�xt�� − �F�t�����exp
−

1

�2	
t0

t

dt�	
t0

t�
ds yt� · C�x��t�,s� · ys�

�10�

=ei
	
x0

x

Dx	 D��x�P���x���
Mẍt� +
�Vi

�q
�xt�� − �F�t��� − ��x��t��� , �11�

where 
=M�ẋtyt− ẋ0y0� /� is an irrelevant phase factor. In
the following paragraphs, we interpret the previous expres-
sions for the propagator and derive the equation governing
the ionic dynamics.

Let us start with Eq. �10�. The integrand is the product of
two exponentials. In the first one y�t� enters only linearly
while the second exponential is Gaussian in y�t�. The first
exponential would be the only term present had we truncated
the power expansion �7� at the first-order term in y. In that
case L would simply look like the propagator of a system of
particles under the influence of deterministic external force
�F�t��; indeed the y integral can then be performed and leads
to

L�x,y,t;x0,y0,t0� � 	
x0

x

Dx �
Mẍt� +
�Vi

�q
�xt�� − �F�t���� .

Thus, in this approximation, the ions are constrained to fol-
low classical trajectories according to Newton’s equation of
motion,

Mẍt� = −
�Vi

�q
�xt�� + �F�t��� .

The force is the sum of the classical force −��Vi /�q��xt��
due to the ion-ion interaction together with the deterministic

force �F�t�� which, as we shall see below, describes
the systematic friction force due to the electronic
environment.

Higher-order approximations allow one to describe the
effect of the fluctuations in the electron gas. These are crucial
since they are responsible for the energy exchange between
the two subsystems. Here, these fluctuations are described by
the second exponential, quadratic in y�t�, which confines the
excursions of the off-diagonal components to small values
�17�. This term acts as a stochastic, Gaussian noise on the
trajectory x�t�. The Gaussian noise may be interpreted as the
effect of an associated fluctuating force ��x��t� acting on the
ions and describes the unknown nondeterministic fluctua-
tions in the electronic subsystem �11�. To see this, using the
properties of Gaussian integrals, we note that the Gaussian
term can be written as an average over a Gaussian stochastic
process as

exp
−
1

�2	
t0

t

dt�	
t0

t�
ds y�t�� · C�x��t�,s� · y�s��

=�exp
 i

�
	

t0

t

dt�y�t�� · ��x��t����
�

=	 D��x�P���x��exp
 i

�
	

t0

t

dt�y�t�� · ��x��t��� , �12�
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where

P���x�� = exp
−
1

2
	

t0

t

dt�	
t0

t

ds��x��t�� · �C�x��t�,s��−1 · ��x��s��
is a Gaussian probability distribution �its normalization is
absorbed in the measure D�� characterized by a zero average
��k

�x��t���=0, and the covariance matrix

��k
�x��t�� j

�x��t���� = Ckj
�x��t,t��, k, j = 1, . . . ,3Ni. �13�

When the transformation �12� is substituted in �10�, the
off-diagonal element y now occurs only linearly in the
propagator and the path integral Dy can easily be evaluated
to yield the second expression, Eq. �11�. This new expression
for the propagator can be interpreted as follows. The motion
of the ions is constrained to follow the stochastic
integro-differential equation,

Mẍk�t� + � �Vi

�qk
�

q=x�t�
− �Fk�t�� = �k

�x��t� . �14�

The term �F�t�� is a deterministic, retarded force that de-
scribes the average effect of the electrons on the ions. The
random term ��x��t� describes the effect of the coupling to the
fluctuations in the electronic subsystem and undergoes a
Gaussian stochastic process characterized by a zero average
and the variance �13�.

The systematic friction force �F�t��, Eq. �8�, can be
made explicit if one looks at the short-time dynamics.
To this end, we use the fact that on a short time scale
xs�xt− �t−s�ẋt, and the evolution operator Ut,t0

�x� can be
approximated as

Ut,t0
�x� = Ut,t0

�x�

�
1 +
i

�
ẋt · 	

t0

t

�t − s�Us,t0
† �x�V��r,xt�Us,t0

�x�ds� ,

where Ut,t0
�x�=e−�i/���Ĥe�r�+V̂�r,xt���t−t0�. When this approxima-

tion is introduced in Eq. �8�, the systematic force reads

�Fk�t�� = �Fk�t�� + �
j

ẋ j�t�	
−�

t−t0

ds sRk,j�s� ,

where

F�s� 
 − Us,t0
† �x�V��r,xt�Us,t0

�x� ,

and Rk,j is defined below. The total systematic force consists
of two terms. The force F�t� is the instantaneous force
between the ion density and the electron density,

�Fk�t�� = −
�

�qk
�	 dr v�r��ne�r,t���

q=xt

, �15�

and is merely the Born-Oppenheimer force when the system
is at equilibrium. The second term represents the systematic
friction that the ions undergo as they move in the surround-
ing electronic bath. The friction depends on the fluctuations
�Fk�t�=Fk�t�− �Fk�t�� of the averaged force F�t� via

Rk,j�t − s� = −
i

�
���Fk�t�,�F j�s���
�t − s� , �16�

where 
 is the Heaviside step function. The equation of
motion �14� takes the form of a generalized Langevin
equation

Mẍk�t� + � �Vi

�qk
�

q=x�t�
+

�

�qk
�	 dr v�r��ne�r,t���

q=xt

− �
j

ẋ j�t�	
−�

t−t0

ds sRkj�s� = �k
�x��t� , �17�

where the Gaussian noise ��x� satisfies

��k
�x��t�� j

�x��s��� 
 Ck,j
�x��t − s� =

1

2
���Fk�t�,�F j�s��� . �18�

Up to this point, no assumption has been made about the
state of the two subsystems. When the electronic averaging
�¯� is performed over a canonical ensemble at temperature
Te, each matrix element Rk,j can be interpreted as a retarded
response function as defined in linear response theory �18�.
In agreement with this theory, the response function Rk,j and
the symmetric correlation function Ck,j are related by a
fluctuation-dissipation relation. In other words, when a
temperature can be assigned to the electronic subsystem, the
friction term and the noise term are related by a fluctuation-
dissipation relation although the global system is not in
equilibrium.

In order to rewrite the previous results in terms of more
familiar physical quantities, we shall evaluate the averages
�¯� assuming that the electron subsystem is in equilibrium
at temperature Te. Using the notation defined at the begin-
ning, the response functions �16� and correlation functions
�18� can be written as

Rk,j
�x��t� =	 dr1	 dr2 vk��r1�v j��r2��ee

�x��r1,r2,t� ,

Ck,j
�x��t� =	 dr1	 dr2 vk��r1�v j��r2�See

�x��r1,r2,t� �19�

with vk��r�=�v�r� /�qk. We have defined

�ee
�x��r1,r2,�� = −

i

�
���ne�r1,��,�ne�r2���
��� , �20�

See
�x��r1,r2,�� =

1

2
���ne�r1,��,�ne�r2��� , �21�
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which are the electron-electron density response function and
correlation function for an electron system in the external
potential of the fixed ionic configuration x, respectively. Ac-
cording to linear response theory, these two quantities are
related by the fluctuation-dissipation relation

See
�x��r1,r2,�� = − � coth
 ��

2kBTe
�Im �ee

�x��r1,r2,�� ,

where we defined the temporal Fourier transform f���
=�−�

� f�t�ei�t. Using Eq. �19�, we find that a similar relation
holds between Ck,j, and Rk,j,

Ck,j
�x���� = − � coth
 ��

2kBTe
�Im Rk,j

�x���� . �22�

In most situations the electronic correlation time �e is
much smaller than the ionic correlation time �i, �e /�i�1,
because the electron collision time is rather short. In that
case, we can safely approximate the colored noise �18� with
a white noise, i.e.,

Ck,j
�x���� � ����	

−�

�

dt Ck,j
�x��t� , �23�

and Eq. �17� by

Mẍk�t� + � �Vi

�qk
�

q=x�t�
+

�

�qk
�	 dr v�r��ne�r,t���

q=xt

+ M�
j

�kjẋj�t� = �k
�x��t� , �24�

where

�kj = −
1

M
	

−�

�

tRk,j�t�dt = Im
�

��
Rk,j�� = 0�

= −
1

M
	 dr1	 dr2 vk��r1�v j��r2�

�Im
�

��
�ee

�x��r1,r2,� = 0� . �25�

Combining Eqs. �18�, �19�, �22�, �23�, and �25�, we find
that the Gaussian stochastic force ��x� has a white spectrum
�19�

��k�x,t�� j�x,s��� = 2MkBTe�kj��t − s� . �26�

The equation generalizes to nonequilibrium situations the
white noise for classical Brownian motion.

Equations �24�–�26� constitute the first important result of
this paper upon which the following results for the energy
relaxation rate are all based. Since Eq. �24� is stochastic, one
cannot speak at any given time t of the instantaneous posi-
tions and velocities of the ions but rather of their probability
distribution. We also note that this equation applies to both
equilibirum and nonequilibrium situations. The effect of the

electrons, which is still treated quantum mechanically, has
been partitioned into a systematic part and a fluctuating part
�or noise�. The systematic force is composed of two terms.
The first one is equal to the instantaneous mean field force
due to the instantaneous Coulomb interaction of the ions
with the averaged electron density. Unlike systems interact-
ing through short-range forces, this mean-field term cannot
be discarded in Coulomb systems. The fluctuations in the
mean field give rise to the second part of the systematic force
and to the noise term. The former acts as a frictional force
proportional to the particle velocities �20�. The noise term is
zero on average and is related to the systematic friction
through the fluctuation-dissipation relation �26�. It is beyond
the scope of this paper to discuss all the implications of Eq.
�24� and, in the following, we will restrict ourselves to the
energy relaxation problem.

III. TEMPERATURE RELAXATION RATE

In this section, we use the equation of motion �24� to
compute the rate at which the electronic and ionic sub-
systems come into thermal equilibrium. We suppose that the
electron-ion energy exchange occurs on a time scale much
larger than the energy exchange within the two subsystems.
In other words, we assume that on a dissipational time scale
�kj /M the ionic velocities are thermally distributed at a
temperature Ti, i.e.,

M�ẋkẋj�i = �kjkBTi,

where �¯�i denotes the equilibrium average at temperature
Ti over the ionic ensemble. By multiplying Eq. �24� by xt and
averaging over the ensemble of ions, we obtain the equation
of evolution for the total instantaneous energy Eion of the
ionic system,

dEion

dt
=

d

dt��
I=1

Ni MṘI
2

2
+ U��RI���

i

= − 
�
k

3Ni

�kk�kBTi

+ ��t · ẋt�i, �27�

where U=Vi+V is the total instantaneous potential energy of
the ionic subsystem. The last term in the right-hand side of
Eq. �27� can be evaluated by noting that on the fast time
scale of the noise ��t�, Eq. �24� transforms into Mẍt��t.
Then, substituting ẋt= �1/M��t dt��t� into the last term of Eq.
�24� and averaging over the noise with the use of the
fluctuation-dissipation relation �26�, we obtain an equation
for the time evolution of the energy of the ionic subsystem in
the traditional form,

1

kB

dEion

dt
= g�Te − Ti� .

The coefficient g=�k�kk is the electron-ion energy relaxation
rate. Using Eq. �25�, we obtain the compact expressions
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g = −
1

M
�

k

3Ni �	 dr1	 dr2 vk��r1�vk��r2�Im
�

��
�ee

�x��r1,r2,� = 0��
i

= −
1

M
Im	 dR	 dr1	 dr2

�

�r1
vei�r1 − R� ·

�

�r1
vei�r2 − R��nion

�x� �R�
��ee

�x�

��
�r1,r2,� = 0��

i

= −
1

M
Im

1

V
�
k,k�

k · k�vie�− k�vie�k���nion
�x� �− k + k��

��ee
�x�

��
�k,k�,� = 0��

i

. �28�

In the last expression, we have introduced the spatial Fourier
representation of the potential and of the response function,
namely,

�ee
�x��k,k�,t� =

1

V
	 dr1 e−ik·r1	 dr2 eik�·r2�ee

�x��r1,r2,t�

= −
1

V

i

�
��ne�k,t�,ne�− k���� .

Equation �28� is the second central result of this paper and
we will discuss it in depth in Sec. V. In the next section, we
show that direct approximations to �28� lead to the familiar
Landau-Spitzer and Fermi golden rule results.

IV. REDUCTION TO FAMILIAR RESULTS

Despite its apparent simplicity, the expression �28� is in
general difficult to evaluate analytically for two main
reasons. First, the response function �ee

�x��r1 ,r2 ,�=0� of an
interacting electron system in the external potential of
the ionic configuration �x� is a complicated object that is
poorly known. Second, the average �¯�i over the ionic
configurations may be difficult to perform.

The calculation can be greatly simplified if one assumes
that the average over the ionic configurations washes out the
effect of the underlying ionic structure, which leads to the
approximation

�nion
�x� �R�

��ee
�x�

��
�r1,r2,� = 0��

i

� nion

��ee
jel

��
�r1,r2,� = 0� ,

�29�

where nion= �nion
�x� �R��i=Ni /V is the ionic particle density and

�ee
jel�r ,r� ,�� is the electron density-density response function

of the homogeneous interacting electron gas in the jellium
model. In this model, the actual discrete structure of the ionic
background on which the electrons roam is replaced by a
homogeneous continuum density of positive charge. The ap-
proximation �29� amounts to the supposition that the two
subsystems are weakly coupled in the sense that the proper-
ties of the electrons are not affected by their interactions with
the inhomogeneities of the underlying ionic potential. This is
nothing but the approximation used by Kogan �9�, by
Dharma-wardana and Perrot �7�, and by Hazak et al. �8� to
derive the energy relaxation rate using linear response theory

mentioned in the Introduction. The approximation �29�
should therefore reproduce the Fermi golden rule result when
introduced in Eq. �28�. Since in the jellium model
�ee

jel�k ,k� ,��=�ee
jel�k ,���k,k�, it is straightforward to show

that Eq. �28� indeed reduces to the Fermi golden rule result
�8�,

g = −
nion

M
	 dk

�2��3k2�vie�k��2 Im
��ee

jel

��
�k,0�

= −
nion

M
	 dk

�2��3k2�vie�k��2

�
Im���0/����k,0�

�1 − �4�e2/k2��1 − G�k,0��Re �0�k,0��2 , �30�

where, in the second expression, we have expressed �ee
jel

in terms of the free-particle response function �0�k ,��
and the local field correction G�k ,��. Equation �30� corre-
sponds to the Fermi golden rule result obtained when assum-
ing that ions are much more massive than electrons
or, equivalently, that the relaxation rate is not sensitive to the
fluctuations in the ionic subsystem �see �8� for the details�.
Assuming vie�r�=−Ze2 /r and taking the nondegenerate elec-
tron limit of �ee

jel, Eq. �30� reduces to the Landau-Spitzer
form

g = 4ni
�2�mM�1/2

�MkBTe�3/2 Z2e4ne ln � ,

in terms of the Coulomb logarithm,

ln � 
	 dk

k

k4

�k2 + kDe
2 �1 − G�k,0���2 exp
−

�e
2

8
k2� .

Here kDe=�4�nee
2 /kBTe is the electronic Debye wave vector

and �e= � /�mkBTe is the electronic thermal de Broglie
wavelength.

The original diverging Landau-Spitzer formula can
be more straightforwardly obtained if, in Eq. �29�, one
uses the response function of a classical free-electron
gas �cl

0 �k ,��, thereby neglecting the electron-electron
interactions �21�,
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�nion
�x� �− k + k��

��ee
�x�

��
�k,k�,� = 0��

i

� nion

��cl
0

��
�k,� = 0�

= − nionne��

2

me
1/2

�kBTe�3/2

1

k
,

with ne=Ne /V the electronic number density. When
introduced in Eq. �28�, we easily recover the well-known
Landau-Spitzer result

kB
dTi

dT
=

2

3nion

dEion

dt
=

Te − Ti

�LS
,

where

1

�LS
=

2

3nion
g =

8

3

�2�mM�1/2

�MkBTe�3/2 Z2e4ne ln �

is the Landau-Spitzer energy relaxation rate with
ln �LS=�dk�1/k� the Coulomb logarithm mentioned in the
Introduction �4�.

Similarly, it is straightforward to show that Eq. �28� re-
produces the relaxation rate predicted by the Lenard-Balescu
equation when �ee

�x� is approximated by the electron-electron
response function of a two-component plasma in the
random-phase approximation.

V. DISCUSSION AND PROSPECTS

We have derived a compact expression, Eq. �28�, for the
energy relaxation rate of a two-temperature electron-ion sys-
tem. The quantum character of the electron system and the
electron-electron interactions enter in the quantity �ee

�x�, the
effect of electron-ion interactions is included through the de-
pendence of �ee

�x� on the ionic configurations x, and, finally,
the dependence on the ion-ion interactions is described by
the average �¯�i. The conditions of validity of this formula
are that the electron-ion energy exchange is slow compared
with the energy relaxation within each subsystem �two-
temperature assumption� and that the ion dynamics occurs
on a time scale larger than the electron dynamics �heavy
ion approximation�. As a consequence, the rate of energy
relaxation between electrons and ions is not sensitive to
the details of the ionic spectrum of fluctuations and depends
only on the low-frequency properties ��0 of the density
fluctuations of the electron gas in the external potential of the
fixed ions, averaged over the ionic configurations sampled at
temperature Ti. There is no restriction on the strength of the
electron-ion coupling or on the degeneracy of the electronic
system. Our formula therefore applies to a large class of
systems including room temperature solid metals, liquid
metals, warm dense matter, and hot plasmas.

It is in general very difficult to derive an exact analytical
expression for the response functions �ee

�x�. When the
electron-ion coupling is very weak, a good approximation for
�ee

�x� is probably the jellium response function discussed in
Sec. IV. Physical regimes where electron-ion interactions are
not weak �e.g., in the warm dense matter regime� are difficult
to deal with analytically although, in principle, Eq. �28� ap-
plies. We shall address the question of inclusion of the effect
of the ions in the low-frequency behavior �ee

�x� in a future
presentation �12�.

An important merit of our result �28� is, however, that it
expresses the energy relaxation rate in terms of quantities
that can in principle be evaluated with ab initio simulation
methods. Equation �28� can be looked at as a “nonequilib-
rium Kubo relation” similar to the well-known Kubo rela-
tions that define the transport coefficients of systems at equi-
librium in terms of correlation functions. Ab initio methods,
such as quantum molecular dynamics �QMD�, have been
successfully used in the description of equilibrium properties
of condensed matter and warm dense matter �22�. In QMD,
for instance, the active electrons receive a full quantum me-
chanical treatment within the finite-temperature density func-
tional theory while ions are propagated classically according
to Newton’s equations, in which the electron-ion force is
calculated in the Born-Oppenheimer, adiabatic approxima-
tion. Unfortunately, most existing ab initio approaches are
adequate to investigate equilibrium properties of materials
�Te=Ti�, such as the equation of state properties or the elec-
trical conductivity, and cannot be applied to nonequilibrium
situations. However, since our expression �28� depends on
averages over equilibrium ensembles, we believe that it is
amenable to such ab initio calculations with slight, well-
controlled modifications of the existing simulation codes. To
conclude this paper, we propose an approach based on finite-
temperature density functional calculations such as QMD
that, in principle, could be implemented to estimate the en-
ergy relaxation rates in a two-temperature plasma with elec-
tron temperature Te and ion temperature Ti. It is beyond our
scope to discuss here the technical details and we just outline
the following possible approach. �1� Given a fixed ionic
configuration x, calculate the electron density-density re-
sponse function �ee

�x� at temperature Te. To this end, solve the
finite-temperature Kohn-Sham �KS� equations at temperature
Te for the KS orbitals 
 j�r� and KS energies 	 j, and compute
the KS density response function�KS

�x�,

�KS
�x��r,r�,�� = �

jk

�nj − nk�

 j�r�
k

*�r�
 j
*�r��
k�r��

� − �	 j − 	k� + i0+ ,

where nj =1/ �exp�	 j /kBTe�−1� is the Fermi occupation
number. The required response function �ee

�x� is obtained by
solving the Dyson equation

�ee
�x��r,t;r�,t�� = �KS

�x��r,t;r�,t�� +	 dx	 d�	 dx�	 d���KS
�x��r,t;x,��
��� − ���

�x − x��
+ fxc�n0��x,�;x�,�����ee

�x��r,t;r�,t��
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with fxc�n0��r , t ;r� , t��= ��vxc�n��r , t� /�n�r� , t����n0
and vxc

the exchange-correlation potential.

�2� The same calculation must then be repeated for all the
configurations representative of the ionic system at tempera-
ture Ti immersed in the electronic bath at temperature Te.
Such a sampling could be obtained via molecular dynamics
techniques using for the electron-ion force the “nonequilib-
rium” Born-Oppenheimer force Eq. �15�, and a numerical
thermostat �e.g., Nose-Hoover� to impose the temperature Ti.

�3� Finally, the rate of energy relaxation is obtained using
�28� by averaging the diverse �ee

�x� from the previous two
steps.
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